Velocity, energy, and helicity of vortex knots and unknots.

نویسندگان

  • F Maggioni
  • S Alamri
  • C F Barenghi
  • R L Ricca
چکیده

In this paper we determine the velocity, the energy, and estimate writhe and twist helicity contributions of vortex filaments in the shape of torus knots and unknots (as toroidal and poloidal coils) in a perfect fluid. Calculations are performed by numerical integration of the Biot-Savart law. Vortex complexity is parametrized by the winding number w given by the ratio of the number of meridian wraps to that of longitudinal wraps. We find that for w<1 vortex knots and toroidal coils move faster and carry more energy than a reference vortex ring of same size and circulation, whereas for w>1 knots and poloidal coils have approximately same speed and energy of the reference vortex ring. Helicity is dominated by writhe contributions. Finally, we confirm the stabilizing effect of the Biot-Savart law for all knots and unknots tested, found to be structurally stable over a distance of several diameters. Our results also apply to quantized vortices in superfluid 4He .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic energy of vortex knots and unknots

New results on the kinetic energy of ideal vortex filaments in the shape of torus knots and unknots are presented. These knots are given by small-amplitude torus knot solutions (Ricca, 1993) to the Localized Induction Approximation (LIA) law. The kinetic energy of different knot and unknot types is calculated and presented for comparison. These results provide new information on relationships b...

متن کامل

Helicity conservation by flow across scales in reconnecting vortex links and knots.

The conjecture that helicity (or knottedness) is a fundamental conserved quantity has a rich history in fluid mechanics, but the nature of this conservation in the presence of dissipation has proven difficult to resolve. Making use of recent advances, we create vortex knots and links in viscous fluids and simulated superfluids and track their geometry through topology-changing reconnections. We...

متن کامل

Analysis of the Characteristics, Physical Concepts and Entropy Generation in a Turbulent Channel Flow Using Vortex Blob Method

In this paper, using vortex blob method (VBM), turbulent flow in a channel is studied and physical concepts of turbulence are obtained and discussed. At first, time-averaged velocities,  and , and then their fluctuations are calculated. To clarify turbulence structures, velocity fluctuations and  are plotted. It is observed that turbulence structures occupy different positions and move with con...

متن کامل

On Composite Twisted Unknots

Following Mathieu [Ma], Motegi [Mo] and others, we consider the class of possible composite twisted unknots as well as pairs of composite knots related by twisting. At most one composite knot can arise from a particular V -twisting of an unknot; moreover a twisting of the unknot cannot be composite if we have applied more than a single full twist. A pair of composite knots can be related throug...

متن کامل

Random Vortex Method for Geometries with Unsolvable Schwarz-Christoffel Formula

In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method (in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to map the physical geometry into the upper half plane. In some complex geometries like the flow in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010